Осми разред основне школе
Решавање линеарних једначина са једном непознатом 3
Решени задаци.
Задаци
Текст задатака објашњених у видео лекцији:
Пр.1) Решити следеће једначине:
а) $\frac{x}{3} - \frac{1}{2} = \frac{x}{4} + \frac{1}{2}$
б) $x - \frac{{2x - 5}}{5} = 4$
в) $\frac{{2x}}{3} - \frac{{x - 3}}{6} - 0,5 = x$
г) $\frac{{3\left( {x - 1} \right)}}{2} + \frac{{x - 4}}{3} = 12 - \frac{{x + 1}}{2}$ д) $\frac{{2x + 3}}{3} - \frac{{5x - 14}}{{12}} = \frac{{x + 1}}{4} - 3$Пр.1)
а) | $\frac{x}{3} - \frac{1}{2} = \frac{x}{4} + \frac{1}{2}$ | б) | $x - \frac{{2x - 5}}{5} = 4$ |
$\frac{x}{3} - \frac{1}{2} = \frac{x}{4} + \frac{1}{2}\left| { \cdot 12} \right.$ | $x - \frac{{2x - 5}}{5} = 4\left| { \cdot 5} \right.$ | ||
$12 \cdot \frac{x}{3} - 12 \cdot \frac{1}{2} = 12 \cdot \frac{x}{4} + 12 \cdot \frac{1}{2}$ | $x \cdot 5 - \frac{{2x - 5}}{5} \cdot 5 = 4 \cdot 5$ | ||
$4x - 6 = 3x + 6$ | $5x - \left( {2x - 5} \right) = 20$ | ||
$4x - 3x = 6 + 6$ | $5x - 2x + 5 = 20$ | ||
$x = 12$ | $5x - 2x = 20 - 5$ | ||
$3x = 15$ | |||
$x = 5$ |
в) | $\frac{{2x}}{3} - \frac{{x - 3}}{6} - 0,5 = x$ | г) | $\frac{{3\left( {x - 1} \right)}}{2} + \frac{{x - 4}}{3} = 12 - \frac{{x + 1}}{2}$ |
$\frac{{2x}}{3} - \frac{{x - 3}}{6} - 0,5 = x\left| { \cdot 6} \right.$ | $\frac{{3\left( {x - 1} \right)}}{2} + \frac{{x - 4}}{3} = 12 - \frac{{x + 1}}{2}\left| { \cdot 6} \right.$ | ||
$\frac{{2x}}{3} \cdot 6 - \frac{{x - 3}}{6} \cdot 6 - 0,5 \cdot 6 = x \cdot 6$ | $\frac{{3\left( {x - 1} \right)}}{2} \cdot 6 + \frac{{x - 4}}{3} \cdot 6 = 12 \cdot 6 - \frac{{x + 1}}{2} \cdot 6$ | ||
$4x - \left( {x - 3} \right) - 3 = 6x$ | $3 \cdot 3 \cdot \left( {x - 1} \right) + 2 \cdot \left( {x - 4} \right) = 72 - 3 \cdot \left( {x + 1} \right)$ | ||
$4x - x + 3 - 3 = 6x$ | $9x - 9 + 2x - 8 = 72 - 3x - 3$ | ||
$4x - x - 6x = 0$ | $11x - 17 = 69 - 3x$ | ||
$ - 3x = 0$ | $11x + 3x = 69 + 17$ | ||
$x = \frac{0}{{ - 3}}$ | $14x = 86$ | ||
$x = 0$ | $x = \frac{{86}}{{14}}$ | ||
$x = 6\frac{1}{7}$ |
д)
$\frac{{2x + 3}}{3} - \frac{{5x - 14}}{{12}} = \frac{{x + 1}}{4} - 3$
$ \frac{{2x + 3}}{3} - \frac{{5x - 14}}{{12}} = \frac{{x + 1}}{4} - 3\left| { \cdot 12} \right. $
$\frac{{2x + 3}}{3} \cdot 12 - \frac{{5x - 14}}{{12}} \cdot 12 = \frac{{x + 1}}{4} \cdot 12 - 3 \cdot 12 $
$4 \cdot \left( {2x + 3} \right) - \left( {5x - 14} \right) = 3 \cdot \left( {x + 1} \right) - 36 $
$8x + 12 - 5x + 14 = 3x + 3 - 36 $
$3x + 26 = 3x - 33 $
$0x = - 59 $
$x \in \emptyset $